
J. Mol. Model. 1998, 4, 132 – 144

© Springer-Verlag 1998FULL PAPER

Introduction

One of the most fundamental unsolved problems in chemis-
try is predicting how a molecule will pack in the solid state
solely on the basis of its molecular structure [1].

Ab-initio crystal structure prediction is still considered a
long-term goal [2]. A formidable obstacle to such a predic-
tion is the existence of a large number of local minima in
the high-dimensional potential energy surface of the crys-
tal, which makes it extremely difficult to locate the most
stable structure [3]. Sometimes thousands of quite different
local minima can fall within a narrow energy range (40
kJ·mol–1), as has been witnessed for monosaccharides [4].
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This effect is also observed in nature, where many different
crystal structures can often be found for one molecule.

Even so, sometimes the problem can be rendered feasi-
ble. Sometimes, The X-ray powder spectrum is available, but
the structure cannot be solved from the spectrum due to the
phase problem. The phase problem arises, when the cell pa-
rameters (the length of the translation vectors, the angles
between them, and the space group) can be determined but
the orientation of the molecule inside the cell cannot be cal-
culated directly from the spectrum. In this case the spectra of
proposed crystal structures can be compared with the experi-
mental data. Thus crystal prediction is satisfactory for this
purpose, if the observed crystal structure is among the high-
est-ranking solutions found by the algorithm. These struc-
tures can be used as good starting points for refinement pro-
cedures based on spectra comparison. An overview about
various approaches for this procedures can be found in vari-
ous textbooks [5, 6].

We have developed a new program, FlexCryst, to solve
the ab-initio problem, but the program can be used also for
interpreting powder spectra. In this case the additional infor-
mation can be exploited to improve the performance and the
quality of the results.

The algorithm of FlexCryst

Currently, the program can handle the four space groups P1,
P1 , P21, and P212121 and can be easily extended to further
space groups. Some adaption to each space group has to take
place, since different space groups are determined by differ-
ent sets of symmetry operations. In the worst case of space
group P1 , four independent symmetry elements (three trans-
lations and one inversion center) define the crystal structure.
The algorithm presupposes that the molecule is rigid. This
assumption is justified for pigments (Figure 4), which are
often fixed by the enlarged π-systems, and for steroids (Fig-

ure 1), which are fixed by the high connectivity of the ring-
systems. At the moment the program handles only crystal
structures with one molecule per asymmetric unit. Fortunately
most crystals observed in nature fulfill this condition. An
extension of the algorithm to several molecules per asym-
metric unit, increases the search space by six degrees of free-
dom per molecule. The corresponding variables determine
the translation of the molecule and its orientation in the asym-
metric unit.

In the following we give a high-level description of the
FlexCryst algorithm. The input is a 3-D conformation of an
organic molecule.

Figure 1 Recomputation of the structure of an organic mol-
ecule (red=observed,  green=computed)
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Figure 2 Model of a hydrogen bond. The two interaction
centers (green) are lie  on the interaction surface (blue) of
the other unit forming an interaction  (yellow)

Figure 3 Result of the analysis of a molecule by Flex. The
interaction surfaces  are connected by lines to the interac-
tion centers
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Step 1: The molecule is automatically supplemented with
hydrogen atoms. For this step we use SYBYL [7].

Step 2: The molecule is searched for active centers by
using the program Flex [8-11]. Around these centers we cal-
culate potential interaction surfaces. If an interaction between
two groups is formed, an interaction center of the first group
has to lie on the interaction surfaces of the second group and
vice versa (Fgure 2). The result of the analysis of an mol-
ecule by Flex is shown in Figure 3. The different surfaces are
colored depending on their functionality. An complete de-
scription and an on-line version is available via Internet http:/
/www.gmd.de/SCAI/alg/reliwe.

Step 3: The interaction centers and the interaction sur-
faces are discretized (Figure 4), in order to trade off calcula-

tion time and accuracy our mesh size is 1 Å. Larger mesh
sizes significantly reduce the number of interaction points,
which reduces the runtime in the subsequent steps. At the
same time, the accuracy of the prediction deteriorates.

Step 4: Possible crystal structures are generated. This step
differs for each space group. This step is a small set of com-
putation modules, each of which perform a certain task as
searching a certain symmetry operation, adding an additional
symmetry element, applying the energy constraint, and ap-
plying the angle constraint. The detailed procedure for each
space group can be taken from the flowchart in Table 1.

a) search symmetry operation: Proper symmetry opera-
tions (including possible unit cell vectors) for crystal struc-
tures are determined, analyzing interaction centers and inter-
action points found in step 1. Currently this step is imple-
mented for the translation, the inversion center, and the two-
fold screw-axis. It is very crucial for the velocity of the pro-
gram. Solving the following equations gives proper symme-
try elements without scanning. Each symmetry element has
to map one or more points p onto interaction centers c. Each
symmetry element can be described by a rotation W and a
translation w. In general our condition can be written as:
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In the case of a pure translation, the rotational part re-
duces to the unit matrix, and the formula simplifies to:
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The translations calculated by this equation proper unit
cell vectors. Selecting three of them gives a crystal structure
of space group P1.

Table 1 Flowchart for the construction of the crystals in the various space  groups

P1 P1 P21 P212121

search translation search inversion search screw axis search screw axis

energy constraint energy constraint energy constraint angle constraint

add translation search translation search translation add screw axis
Figure 5

add translation energy constraint angle constraint

add translation add translation

add translation energy constraint

add translation add translation

Figure 4 Molecule with interaction points (purple) and in-
teraction centers (green)  after discretization
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The inversion has three free parameters. To determine
proper inversions the following equation has to be solved.
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The two-fold screw-axis Mrot21 has five degrees of free-
dom. To find proper axis for the crystal structure two pairs of
centers and points have to be considered simultaneously (i ∈
{1,2}). In general a rotation about the axis l is described by
the equation
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The symmetry operation has to be an unitary transforma-
tion, which requires det(W)=1. For the solution of the equa-
tion we get:

l
p p c c
p p c c

=
− + −
− + −

1 2 1 2

1 2 1 2
(5)

The translation expressed gives:

w c Wp1 1= − (6)

The condition that the transformation is unitary can be
rewritten as:

p p c c1 2 1 2− = − (7)

b) add symmetry operation: This module adds an addi-
tional symmetry element to a structure, that is already par-
tially defined by a number of symmetry elements. In this
way the crystals are constructed step by step. This procedure
is very similar to the molecular nuclei concept applied in
PROMET [12]. In addition to the symmetry operations screw-
axis, inversion centers, and glide planes (in work), we con-
sider translations as symmetry operations. Selecting a first
symmetry element creates a dimer. If this symmetry element
is important for the crystal structure the created dimer will
be energetically favorable. Thus we have to retain only a few
numbers of dimers for further processing. The importance of
a symmetry element for the different space groups can be
derived statistically by considering the distribution of mo-
lecular centers in the unit cells [13]. Adding a second sym-
metry element, creates a tetramer and so on. The number of
symmetry elements necessary to define a crystal uniquely
depends on the space group. In the case of P212121 just two
symmetry elements, two two-fold screw-axis 21a and 21b, de-
fine the crystal structure uniquely. The third screw-axis 21c is
the product of the other screw-axes.

Figure 5 A plane defined by
two translation vectors. Inter-
action centers are  depicted
by green spheres. Those
centers, that form  interac-
tions by being located on in-
teraction points (blue points),
are colored  yellow
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2 2 21 1 1c b a= ⊗ (8)

The translations t are the square of the corresponding axis.

ta a a= ⊗2 21 1 (9)

An other example is the space group P1 . In this space
group first a centrosymmetric dimer is constructed, selecting
an inversion center calculated from eq. 3. Second a transla-
tion is added, creating a tetramer. Afterwards a second trans-
lation and a third translation are added. These four elements
form a complete basis of the space group. An overview of the
selected elements can be seen in Table 2.

c) energy constraint: To apply the energy constraint first
the symmetry elements are applied to the molecule mapping
it onto images. Then the interaction energies between the
images and the reference molecule are evaluated and summed
up. The structures are sorted according to their energy and
only the highest-ranking structures are retained.

 For scoring structures we use the widespread atom-pair
energy approach. The interaction energy Edimer(I,J) between
two molecules I and J is assumed to be the sum of atom-pair
energies Eatom(r,i,j ).
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In contrast to most other force fields, the atom-pair po-
tentials used were derived by analyzing known crystal struc-
tures. From these, we obtain probabilities for the contacts

between the different atoms. The energy function is derived
from these probabilities by the inverse Boltzmann equation.
Applying the inverse Boltzmann equation, the potential en-
ergy between two interacting atoms AiI and AjJ of different
molecules I and J (only intermolecular interactions are of
interest here) can be written as:
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(12)

Pij(r0) is the probability that the shell at distance r0 around
an atom of type i contains an atom of type j and vice versa.
Pij(r∞) is the probability of finding two atoms independently
of each other, as in the case of an infinite distance between
the two atoms. This probability can also be expressed by the
average densities ρi and ρj of the atom types in the crystals.
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We estimated the value of the integration constant Eij  and
the decoupled probability Pij(r∞) by the following procedure.
We statistically derive the pair potential function with unde-
termined shift Eij, applying equation (11) to the atom-pair
correlation function. In order to have enough data to evaluate
the atom-pair correlation function we used the Cambridge
Structure Database [14]. We parameterized the most relevant
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Figure 6 Correlation be-
tween number of atoms and
volume in one unit cell
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interactions, and disregarded the contributions of other inter-
actions. An extension to other chemical elements by provid-
ing the additional pair correlation functions of these elements
is straightforward. The only limitation is the sparsity of avail-
able data for several interaction pairs. For each interaction,
we evaluated the alphabetically first 1000 different crystals
containing the corresponding interaction. This number of
structures is sufficiently large for the calibration, as can be
argued from the fact that the pair potential functions become
almost constant for distances above 4.0 Å. This is to be ex-
pected for decoupled probabilities. For this reason, we re-
place P(r∞) by the value of P(4.0 Å) and disregard energy
contributions for atom pairs with larger distances than 4.0 Å.
To determine Eij , we made use of the fact, that the volume of
predicted crystals depends on Eij. For increasing Eij the vol-
ume of the predicted crystals increases, as well. This is caused
by the mostly monotonically declining pair energy functions
in the range of the van-der-Waals contacts. Calibrating an
average shift Eij  for all pair interactions such that the pre-
dicted and experimental volumes of crystals considered are
equal, gives us a reasonable value for Eij. For our training set
we get a value of -0.68 kcal/mole. Replacing Eij and P(r∞),
the inverse Boltzmann equation can be rewritten as shown in
equation 14.

The cutoff of the energy function at 4 Å introduces an
error to our scoring function. This error has to be balanced

against the discretization. Due to the discretization all unit
cell vectors and origins are located on grid points. The deri-
vation of the atom-pair function (eq. 14) is described in de-
tail in a previous publication [15]. This deductive approach
has been introduced first for protein structure prediction [16
– 18] and, later, has been theoretically justified [19]. The
atom-pair energies for the distances r are tabulated to avoid
time-consuming recalculation.

d) angle constraint: If the space group is not triclinic the
angles between the axis are not arbitrary. They have to be
90° or 60°.

Step 5: The atom density constraint is applied to the crys-
tal structure. This restraint requires the density of atoms per
Å3 to be in the range from 0.7 to 1.3. It is well known that the
mass density of organic molecule crystals varies only little.
We found, that using the number of atoms per unit volume
(Figure 6) rather than the mass (Figure7) leads to an even
higher correlation between density and volume. The figures
contain the complete set of structures (roughly 500), which
were used for our calculations. These structures are statisti-
cally extracted form the CSD database.

Step 6: The crystal structures are sorted according to our
scoring function.

Step 7: The energy constraint is applied to the crystal struc-
tures. The 2000 highest-ranking structures are retained.
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Figure 7 Correlation be-
tween mass and volume in
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Step 8: The structures are clustered. All structures with a
similarity index (see step 9) s=0 are grouped to one cluster.
For each of the resulting clusters only the highest ranking
structure is retained. All other structures are screened out.
These structures are physically identical, but might be differ-
ent in the choice of the unit cell. Increasing the value of s
reduces the number of clusters and improves the qualitative
results (see Qualitative result). But sometimes even the ex-
perimental structure is shredded and the quantitative results
(see Quantitative results) deteriorate. The main reason are
the inadequate positioned hydrogens by our automatic sup-
plementing procedure or/and by the experimental difficulty
to determine the position of hydrogens exact.

Step 9: The crystal structures are compared with the ex-
perimental structure. Comparison of crystal structures is dif-
ficult, because an infinite number of representations for the
unit cell is possible for each crystal structure. Various ap-
proaches to checking the similarity of two cells have been
published. Some of them are based on the comparison of the
simulated spectra [20]. In others first the two unit cells are
normalized [21] and the square deviation between the atoms
in the two unit cells is calculated [22, 23]. For our purposes,
we propose a third method that exploits the fact, that we are
always dealing with the same molecule, which is rigid and
fixed in space. First the translation vectors are compared,
and next the origins of the cell are compared. The similarity
of the translation vectors is checked in the same way for all
space groups. Assuming one base B defined by three vectors
b1, b2, and b3

( )B b b b1 2 3= , , (15)

the three vectors b’ 1, b’ 2, and b’ 3 of the second cell are ex-
pressed as linear combinations t i of the vectors of the first
base B.
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Figure 8 Our proposed simi-
larity index is the distance
(green) of the unit cell  vec-
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space groups

′ =b Bti i (16)

The distance r i between the vectors b’ i and the nearest
grid point Pi of the grid {P(B)} defined by B is given by

[ ]( )r B t ti i i= ′ + − ′0 5. (17)

To compare the origins we have to distinguish between
different space groups. The grid points {P(B)} defined by
the translation vectors are always a subset of the grid {S}
spanned by the possible origins,

( ){ } { }P B S⊆ (18)



J. Mol. Model. 1998, 4 139

Table 2 The results for the different space groups

space group free variables construction tests hits percentage time [min]

P1 9 t,t,t 129 123 95% 1.13

P212121 9 21,21 98 94 96% 34.5

P21 10 21,t,t 100 73 73% 51.8

P1 12 i,t,t,t 95 66 69% 12.7
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Figure 10 Rank of the experimental structure among the pro-
posed structures for  space group P1

e.g. in space group P1 the crystal structure is not influenced
at all by the choice of the origin, in space group P1  and
P212121 the basis vectors of the grid {S} are just half of the
translation vectors b. In the same way as before the distance
of the origin to the next possible grid point of the superset is
calculated.

[ ]( )r S t t t torigin origin origin origin origin= ′ − + − ′ +0 5. (19)

As similarity index we choose the maximum of the four
distances.

{ }s origin= max , , ,r r r r1 2 3 (20)

For our calculations we did choose s < 1.8 Å.

In Figure 8 we show a two dimensional projection of the
space group P1 . The grid P(B) is defined by the experimen-
tally known vectors a and b. Following eq. 17 first we calcu-
late the distance of the vectors a’ and b’  of the simulated
structure to the nearest grid point P(B). In the space group
P1  the origin has to be an inversion center (blue). All inver-
sion centers define a supergrid S (blue) spanned up by the

vectors
′a

2
 and 

′b
2

. The distance of the difference between

the origins to the closest point of the supergrid yields our
measure for similarity.

Results

For validation we extracted about 100 experimental struc-
tures from the Cambridge Structure Database [14] for each
implemented space group. We selected the alphabetically first
organic crystals containing only the elements H, C, N, O, F,
P, S, and Cl. The crystals were required to contain only one
molecule per asymmetric unit. The molecular data were in-
put to the program FlexCryst. The output of the program,
2000 crystal structures for each of the 100 molecules, was
compared with the experimental structure stored in the CSD,
as well.

 We were interested in the quantitative and qualitative as-
pect of our results.

Quantitative results

We first investigated whether the experimental structure was
among the proposed crystal structures at all. The results are
presented in Table 2. The first column shows the space group.
The space group P1 is the simplest, and the one most exten-
sively used for further developments of the program. The other
three space groups are often found in nature and are most
important for practical applications. Fortunately 75% of all
observed crystals are described by just five space groups as
can be seen in Figure 9 [24]. This suggests to restrict future
extensions of the program to a limited number of space groups.

The second column contains the number of free variables
that uniquely determine the unit cell. This number ranges
from nine (P1) to twelve (P1 ), if we consider only one rigid
molecule in the asymmetric unit. The third column contains
the ordered symmetry elements, which were used to con-
struct the crystal step by step. Translations are abbreviated
with t, inversion centers with i, and two-fold screw-axes with
21. In the column “tests” we report the number of structures
extracted from the CSD. In case of P1 we used all available
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rank refcode #clusters #atoms energy time

1 *ADGSMF 360 55 -190.24 45
1 *ADGSMH 1235 55 -199.04 74
1 *BADVAD10 50 64 -163.64 45
2 BAKHOK 1510 79 -320.42 242
8 BDORLA10 1338 29 -113.36 42
1 *BEKHUU 747 74 -249.32 81
1 BERVEZ 1381 78 -226.38 141
1 BETJEP 1049 43 -131.08 50
25 BIPPEV 1624 17 -87.04 40
1 BIXHOF 860 71 -219.56 108
5 *BOTSAE 1373 36 -146.22 64
1 BXCPAF 120 48 -174.32 45
13 *CEGLCA 1629 32 -205.46 41
13 CEGLCA01 1590 32 -196.80 43
– CERPAQ 50 40 0.00 18
37 CETROI 1349 32 -121.34 41
2 CETROI01 1423 32 -142.00 40
1 CIFYOF 1397 89 -322.30 158
1 CIFYOF10 1434 89 -323.66 163
11 CILWOJ 43 46 -193.56 20
2 *CIYRIL01 1343 51 -183.14 60
1 COMCIQ 825 64 -223.10 92
1 COTCIX 1746 52 -203.82 90
1 CUVFOO 1419 24 -133.38 44
1 DAKSAJ 830 53 -179.58 56
1 DARNUF 1160 57 -148.26 93
1 *DEBLOL 1008 90 -338.80 142
1 *DERCIM 202 56 -222.48 31
1 *DIGOXN 306 119 -404.98 176
1 DIGOXN10 461 119 -445.86 178
1 DIWXIQ 1796 61 -236.64 105
1 DOHHIR 1822 52 -337.60 72
1 DOZMIO 1223 44 -232.74 48
4 DUMCET 390 71 -235.32 53
1 EACJEX 1288 92 -377.52 190
10 *ECPRPR01 1194 45 -166.96 54
1 FADGEW 1693 79 -332.70 189
9 *FAKGAZ01 831 47 -247.18 39
3 *FALKAE 840 56 -271.68 53
1 FAMDUS 1387 39 -210.82 69
10 FATXUT 1188 39 -196.28 36
1 FAVSUQ 639 53 -193.60 63
7 *FEPZOP 1172 102 -356.78 164
2 FETWOQ 1541 30 -112.26 61
1 *FEXCOA 631 96 -295.72 110
2 FITVOT 1515 80 -314.66 240
1 FIYJIG 1118 60 -226.28 72
1 *FOMANN 1646 64 -248.38 124

Table 3 The results for the
different space groups
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rank refcode #clusters #atoms energy time

1 FUNVUF 1322 94 -310.20 252
3 FUPVAN 952 61 -177.90 62
– FURCOU 536 20 0.00 20
2 FUXBIJ 1010 40 -175.86 36
1 FUXBIJ01 832 40 -178.04 34
1 GEYMEC 1317 82 -229.66 157
1 GIPJEU 1255 75 -269.20 103
9 *GOJHIW 925 45 -187.44 41
3 *HAGFAW 376 52 -178.98 35
4 *HCARDO 1571 63 -243.20 125
1 HCARDO01 1549 63 -260.80 135
1 *HOLOTM 1218 84 -317.26 128
1 HPICRB 1879 56 -208.18 84
1 HTENTX10 1064 62 -215.94 75
1 *JANDUX 724 66 -193.44 70
1 JECYIZ 1495 40 -182.88 55
1 JIHREX 586 38 -170.88 31
– JIJXEF 413 59 0.00 43
3 *JIPBIT 503 43 -139.32 42
2 *JOVZAV 1820 83 -265.92 228
1 JUFTUZ 1240 35 -180.44 40
1 *KANDUY 1306 77 -208.84 134
1 KANTOI 582 62 -351.26 48
4 *KEGBAZ 1532 39 -149.12 72
1 *KERSIJ 748 110 -363.96 211
1 *KIJCAH 515 74 -285.20 71
1 KITLUU 1550 83 -218.86 151
1 KOCHIT 356 45 -139.10 35
2 KOHNAW 1360 87 -382.02 138
16 KOPROW 1858 52 -201.00 82
1130 *LAWKUP 1220 22 -79.92 43
78 LCDMPP01 1426 20 -107.32 38
4 LCDMPP10 1314 20 -115.94 38
1 LEDNUD 918 60 -163.06 65
1 *LEKVIG 186 115 -338.58 209
1 *LEMZAE 1666 56 -226.70 85
1 LETBOB 1396 54 -231.20 104
1 LYSDOL 483 59 -219.30 49
1 MAMNAC 1270 63 -277.70 71
1 NALCYS02 1043 19 -107.98 33
1 OACGAP 638 85 -313.30 123
1 *OHWTHN 1218 73 -257.68 103
1 OMAPBD 1582 48 -251.40 95
1 PAJSOI 257 66 -193.08 53
1 PATCUI 918 65 -252.84 70
1 PATPYS 769 49 -172.92 63
4 *PEVLOR 1680 91 -378.20 280
17 *PICSEZ 1904 67 -334.04 110

Table 4 The results for the
different space groups
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rank refcode #clusters #atoms energy time

16 PIKYIR 851 44 -159.06 48
7 *PMNTBZ 1011 29 -160.98 47
– *PROGLE20 151 57 0.00 25
2 RPPYPY20 1396 35 -165.88 51
– *SESHUT11 136 26 0.00 18
15 SEZLUE 1780 37 -130.50 56
27 TEOXDE01 910 22 -146.68 39
– *THPGFA 109 59 0.00 24
12 VARHUR 1851 63 -199.24 116
1 VARWUG 1807 58 -249.98 90
1 *VEGJOG 1363 64 -218.80 108
1 VEKZAM 828 90 -332.72 117
5 VITREV 1541 31 -131.50 54
1 *VOBHEZ 1170 49 -164.72 63
11 VOFFAX 1589 41 -143.86 56
1 *VOXXUB 1495 30 -202.90 40
1 VOYVEK 1687 55 -179.26 94
240 WATCID 1438 44 -201.46 73
1 WICVUZ 1384 61 -230.66 71
1 WIKSEO 902 86 -269.04 110
1 WINWEV 1691 51 -174.60 76
1 YABVUS 339 52 -184.48 34
1 *YAMBET 1081 52 -214.68 63
60 YEBGIV 309 23 -65.50 30
1 *YEHRIM 919 41 -148.98 49
1 *YIJBUO 1510 51 -170.28 74
4 YIPPAO 773 73 -233.72 79
1 YIPWAV 1739 52 -237.70 109
1 YOGVOF 1806 65 -260.90 103
1 *YOKGIO 526 73 -198.00 75
2 YUYHAB 1417 18 -105.14 32
1 ZAYWIJ 524 54 -188.18 53

Table 5 The results for the
different space groups

structures, while for the other groups we limited our sets to
100 structures. Some of these structures we found dubious
[a] and dropped manually before the validation. The column
“hits” gives the number of experimental structures found
among the proposed crystals. For P1 only six structures are
not reproduced. One of these structures CERPAQ [25] has
been redetermined [26] and assumed to be of space group
P1 . Three other failures, PROGLE20, SESHUT11, and
THPGFA, are caused by an incorrect automatic addition of
hydrogens. Because it is not always possible to determine
experimentally the position of the hydrogens, they are some-
times omitted in the CSD. These structures were supplemented
automatically with help of the program SYBYL [7]. At this

step the crystal structure is not included and, therefore, some-
times the orientation of the hydrogens is essentially random.
During the construction process of the crystals these supple-
mented H-atoms cause bad contacts. The other two struc-
tures (JIJXEF, FURCOU) have very weak interactions for
one unit cell vector. The corresponding dimer is very low in
energy and the translation vector falls below the energy con-
straint. The next column shows the same results in terms of
percentages. The last column shows the average runtime per
molecule for the particular space group. This time varies from
2 minutes up to 1 hour on a SUN™ULTRA™1 workstation.
The runtime rises significantly with the number of free vari-
ables.

The crystals of space group P21 produces a low rate of
hits compared with the other groups. This results from the
construction of the crystals. The actual implementation re-
quires the screw-axis to be a leading symmetry element of

[a] Wrong crystal structures are  reported to CSD and cor-
rected immediately
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Figure 11 Rank of the experimental structure among the pro-
posed structures for  space group P212121
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Figure 12 Rank of the experimental structure among the pro-
posed structures for  space group P21

the crystal but, for some crystals, the most important pack-
ing pattern incorporates a translation and our the procedure
fails. To find such crystals our construction procedure has to
be extended. The sequence of first determining the screw-
axis and then the translation has to be reversed.

Qualitative results

Secondly we looked for the rank of the experimental struc-
ture among our ranked list of structures. As expected, the
best results were achieved for space group P1 (Figure 10).
Most of experimental structures (107 of 125) are found among
the first ten structures. A complete list of the ranking is given
in the Table 5. The structures with high ranks are caused by
different reasons.

• Hydrogens are supplemented unfavorable (LAWKUP,
PICSEZ, CEGLCA). All structures supplemented with
hydrogens are marked by an asterisk.

• The structure has been misidentified (CILWOJ [27]).
• The first structure determination was imprecise. In these

cases the redetermined structures have much lower ranks
(CETROI 37 → 2, FUXBIJ 2 → 1, HCARDO 4 → 1, and
LCDMPP 78 → 4), even if the difference between the two
structures is very small. In the case of CETROI the differ-
ence between the length of unit cell vectors is less than 0.1 Å
and the molecule coordinates are nearly identically (RMS =
0.15 Å).

• For some structures no obvious reason can be detected.
We recalculated the structures with the TRIPOS force field
[7]. The force field gives for the molecule huge energies, so
we suppose bad contacts in these structures (e.g. BIPPEV
+84 kJ·mol–1).

With increasing number of free variables to be determined
this pattern becomes more and more diffuse. For the space

group P212121 most of the structures (55) are still found among
the ten highest ranking candidates, but a few of them (11)
occupy a rank 400 or greater (Figure 11). The distribution for
the space group P21 (Figure 12) is similar to that for P212121.

The most diffuse pattern was obtained for space group
P1  (Figure 13). Many of the crystals (33) are still found
among the ten highest-ranking candidates, but a remarkable
number (5) has ranks above 400. This reflects the large number
of degrees of freedom.

Conclusions

We have presented a discrete algorithm that detects the ex-
perimentally observed crystal structure of organic molecules
among the computed candidates. Almost always, the experi-
mental structure is found for the simple case of P1 with one
molecule in the unit cell, and for the space groups P1  with
two and P212121 with four molecules in the unit cell. For the
space group P21 with two molecules per unit cell the struc-
ture is detected in a large percentage of the cases and the
percentage might increase by further as the program devel-
ops. The program is very fast. Three ingredients are essential
for the efficiency of our method:

• Analyzing the intermolecular interaction as a preproc-
essing step. This step makes scanning for unit cell vectors
superfluous. All structures builded up exploiting this infor-
mation, finishes in structures with contacts between mol-
ecules. The time consuming evaluation of the energy for struc-
ture refinement in other methods can be skipped. Only the
final fine-tuning by quantum methods [28] or sophisticated
force fields [29] remains.

• Using a discrete configuration space. This allow us to
balance performance versus accuracy.
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Figure 13 Rank of the experimental structure among the pro-
posed structures for  space group P1
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• Statistical potentials. The atom pair-functions are tabu-
lated. Reducing the energy calculation to a simple table-
lookup speeds up the program significantly. In addition the
potentials gives a high flexibility to the program. The param-
eters can be easily trained for a specific group of compounds,
e.g. pigments which contains mostly aromatic rings. The pro-
gram compares very well in accuracy and performance to
other published crystal structure predictions. Most other meth-
ods can be divided into three steps, crystal structure genera-
tion, crystal structure refinement with MD, and fine-tuning
[30, 31]. The proposed algorithm unifies the first two steps.
Only a few number of structures has to be considered for
fine-tuning. (Structures with ranks above 400 we consider as
failure caused by our procedure or worse positioned hydro-
gen atoms.)
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